

Evidence Summary: Scuba-Diving

Clodagh Toomey, PT, PhD Version 1 Month 2018

BC INJURY research and prevention unit

The British Columbia Injury Research and Prevention Unit (BCIRPU) was established by the Ministry of Health and the Minister's Injury Prevention Advisory Committee in August 1997. BCIRPU is housed within the Evidence to Innovation research theme at BC Children's Hospital (BCCH) and supported by the Provincial Health Services Authority (PHSA) and the University of British Columbia (UBC). BCIRPU's vision is to be a leader in the production and transfer of injury prevention knowledge and the integration of evidence-based injury prevention practices into the daily lives of those at risk, those who care for them, and those with a mandate for public health and safety in British Columbia.

Author: Clodagh Toomey

Editors: Sarah A Richmond, Amanda Black

Reproduction, in its original form, is permitted for background use for private study, education instruction and research, provided appropriate credit is given to the BC Injury Research and Prevention Unit. Citation in editorial copy, for newsprint, radio and television is permitted. The material may not be reproduced for commercial use or profit, promotion, resale, or publication in whole or in part without written permission from the BC Injury Research and Prevention Unit.

For any questions regarding this report, contact:

BC Injury Research and Prevention Unit F508 – 4480 Oak Street Vancouver, BC V6H 3V4 Email: <u>bcinjury1@cw.bc.ca</u> Phone: (604) 875-3776 Fax: (604) 875-3569 Website: <u>www.injuryresearch.bc.ca</u>

Suggested Citation:

Toomey C, Black A, Richmond SA, Babul S, Pike I. *Evidence Summary: Scuba Diving*. Active & Safe Central. BC Injury Research and Prevention Unit: Vancouver, BC; 2018. Available at http://activesafe.ca/.

	SPORT:	Scuba-divi	ng or snorkelling	Target Group:	Recrea	tional divers (not occupationa	l divers)
Injury Mechanisms:			All injury/diving-related incidents, fatalities, decompression sickness (DCS) and orofacial barotrauma				
Incidence/Prevalence			Risk/Protective Factors	Interventions		Implementation/ Evaluation	Resources
All injury In a review of the epidemiology of injury in all recreational divers, the prevalence of incidents ranged from 7 to 35 injuries per 10,000 divers and from 5 to 152 injuries per 100,000 dives. ¹ In a cross-sectional survey of registered members of the Divers Alert Network in 2010- 2011, the overall rate of diving- related injury was 3.02 per 100 dives. ² Diving Fatalities		emiology onal of 7 to 35 ers and per vey of f the n 2010- of diving- per 100	Risk Factors Age As divers age, there is an increased risk for decompression illness and diving fatality. ^{11–14} Increased relative risks between older (>49 years) and younger divers are found for arterial gas embolism (RR=3.9), asphyxia (RR=2.5) and disabling cardiac injury (RR=12.9). ¹³ Greater age (>42 years) is also a prognostic factor for incomplete recovery from severe decompression illness. ^{11,14} Sex The annual fatality rate for males is greater than for females by 10 per 100,000 divers up to age 65 years, after which the rates are essentially	Clinical data to support additional intervention measures on DCS develop are lacking due in part to great inter/intra-variabilit between individuals rega susceptibility to DCS. Historically, preventing D been based upon the slow ascent and increasing the duration of decompression stops, which dramatically reduced the incidence an severity of DCS in develop countries in the twentieth century. ²⁶	a to support ntervention in DCS development due in part to the /intra-variability idividuals regarding ty to DCS. , preventing DCS has d upon the slow increasing the f decompression th dramatically e incidence and DCS in developed in the twentieth No studies were found that have evaluated implementation/ evaluation strategies in this sport/activity. Divers Alert Network (DAN) – the diving industry's largest association dedicated to scuba diving safety. http://www.diversalert work.org/		Divers Alert Network (DAN) – the diving industry's largest association dedicated to scuba diving safety. <u>http://www.diversalertnet</u> work.org/
	fatalities account for 0. all-cause mortality ager years. ² Annual fatality rates in are 0.48 (0.37-0.59) de 100,000 dives, or 8.73 10.96) deaths per 100,0 for Australian resident (0.05-0.25) deaths per dives, or 0.46 (0.20-0.9 per 100,000 divers for international visitors to Queensland; and 1.64 (013% of d >15 Australia aths per (6.85- 000 divers s; 0.12 100,000 1) deaths o (0.20-5.93)	after which the rates are essentially the same for both sexes. Relative risk between males and females decreased from 6 at age 25 years to 1 at age 65 years. ¹³ BMI The odds of surviving arterial gas embolism are greater for divers with a normal BMI. ¹³ Asthma A systematic review in 2016 reported	Education Although not tested in recreational divers, educa or ascent training is an important component of prevention. Educating fisherman divers in Vietm in-water recompression techniques, the incidence severe DCS decreased by 3 years; from 8±2 per 100 divers before 2009 to 2±2 1000 diver after the	ation injury am on e of 75% in 00 L per		

deaths per 100,000 dives for the	that there are indications that	intervention. ²⁷	
dive operator in Victoria. ³	recreational divers with asthma may		
	be at increased risk for diving-related	Pre-dive Checklist	
The mean annual fatality rate for	injuries compared to non-asthmatic	Compared with a control group,	
insured members of the Divers	divers. However, limited high quality	use of a pre-dive checklist	
Alert Network was 16.7 deaths	evidence was available. ¹⁵	decreased the incidence of	
per 100,000 divers with 95% CI		major mishaps in the	
14.2-19.0 over the period 2000-	Diabetes	intervention group by 36%,	
2006 (1 death in 6,000 per	Divers with diabetes mellitus may be	minor mishaps by 26% and all	
annum). ⁴	at greater risk of (a) death due to	mishaps by 32%. On average,	
	chronic cardiac disease and (b)	there was one fewer mishap in	
Decompression Sickness (DCS)	unexplained loss of consciousness. ¹³	every 25 intervention dives	
Incidence of self-reported DCS		amongst 1,043 experienced	
symptoms was 1.55 per 1,000	Right-to-left shunt	divers during 2,041 dives. ²⁸	
dives and treated DCS was 5.72	In a 2009 meta-analysis, the		
per 100,000 dives amongst	combined odds ratio of neurological	Pre-conditioning methods	
Divers Alert Network members.	decompression sickness in divers	Experimental evidence suggests	
4	with right-to-left shunt (RLS) was	that, for a population of trained	
Rate of occurrence (per dive) for	4.23 (3.05-5.87). The systematic	and military divers, endurance	
recreational divers in the USA is	screening of RLS in recreational	exercise (even in a warm	
estimated as 0.017 to 0.2%. ⁵	divers seems unnecessary. In	environment) associated with	
	professional divers, because of a	oral hydration prior to the dive	
Following DCS, the prevalence of	chronic exposition and unknown	is beneficial in vascular bubble	
dysbaric osteonecrosis in	consequences of cerebral	reduction. These methods have	
hyperbaric centres in Southern	asymptomatic lesions, screening is	not been tested in the form of a	
France was 19%, suggesting MRI	appropriate. ¹⁰	randomized controlled trial. ²⁹	
for routine screening is justified			
in recreational divers treated for	Spinal Stenosis		
musculoskeletal DCS before they	Divers with cervical and thoracic		
return to diving.°	spinal canal stenosis, mainly due to		
	disk degeneration, are at increased		
In a meta-analysis of MRI studies,	risk for the occurrence of spinal cord		
results suggest that repeated	decompression sickness. ¹		
hyperbaric exposure increases			
the prevalence of white matter	Training/Experience factors		
injury in experienced healthy	Fatal arterial gas embolism was		
divers without neurological	associated with divers in their first		
decompression illness (OR 2.654,	year of certification. ¹³ The relative		

95% CI 1.718 to 4.102). ⁷	risk for non-certified divers reporting		
,	diving injury vs. certified divers is		
Orofacial Iniury	1.31 (95% CI 1.16-1.48). ¹⁸ However.		
An investigation of orofacial	risk of lower pack pain in divers is		
barotrauma symptoms in 163	associated with a higher dive		
Saudi divers reported a	certificate ($p=0.007$). ¹⁰		
prevalence 51.9% for dry mouth,	Greatest risk of fatal arterial gas		
32.5% for clenching and 19.5%	embolism occurred on the first dive		
for temperomandibular pain	of the day. A study in Belgium found		
during a dive. The most frequent	100–400 times increased risk of		
symptoms after a dive were dry	pulmonary barotrauma during		
mouth (22.7%) followed by	training dives. Emergency free-		
clenching and facial pain	ascent training is associated with		
(16.9%).8	500-1,500 times greater risk of		
	pulmonary barotrauma. ¹³		
In a survey of 100 certified			
recreational divers, 41% percent	Exercise after diving		
of the respondents experienced	Exertive exercise following a dive		
dental symptoms during a dive.	increases the risk of arterialization		
Barodontalgia was the most	from 13% at rest to 52%. ¹⁹ Evidence		
frequently experienced dental	suggests arterialization likely		
symptom during a dive. ⁹	increases relative risk of neurological		
	DCS. ²⁰		
Lower back pain			
Lifetime and 1-year prevalence	Flying after diving		
of LBP among 181 recreational	For a single no-decompression dive,		
Flemish scuba divers were 55.8%	one should wait at least 12 hours		
and 50.3%, respectively. ¹⁰	before flying; for multiple dives per		
	day or multiple days of diving, 18		
	hours is suggested, and for any		
	decompression dives, substantially		
	longer than 18 hours appears		
	prudent to reduce risk of DCS. ²¹		
	Equipment factors		
	Arterial gas embolism and asphyxia		
	are associated with buoyancy		
	trouble, equipment trouble, gas		

supply trouble and ascent		
time/trouble. ¹²		
Biting on the mouthpiece		
(OR=1.598), clenching (OR=2.466)		
and the quality rating of the		
mouthpiece (OR=0.887) are risk		
factors for presence of		
temperomandibular pain in divers. ²²		
Scuba divers with lower back pain		
use significantly more weights on		
their weight belts during indoor		
training (p=0.003) and during		
outdoor dives with a dry suit		
(p=0.044) as compared to		
asymptomatic scuba. ¹⁰		
Protective Factors		
Repetitive diving		
Completion of identical daily dives		
resulted in progressively decreasing		
odds of having relatively higher		
grade bubbles on consecutive days.		
The odds on Day 4 were half that of		
Day 1 (OR 0.50, 95% CI: 0.34, 0.73). ²³		
Exercise before diving		
A single bout of exercise 2 h before		
diving reduces microparticle counts		
and some indicators of platelet and		
neutrophil activation which are		
correlated with DCS in mice. The		
effect was observed following both		
aerobic interval training and		
anaerobic cycling.		

Works Cited:	Works Cited:	Works Cited:	
1. Buzzacott PL. The	10. Knaepen K, Cumps E, Zinzen E,	26. Boycott A, Damant C,	
epidemiology of injury in scuba	Meeusen R. (2009). Low-back	Haldane J. (1908). The	
diving. (2012). In: Heggie TW,	problems in recreational self-	prevention of compressed air	
Caine DJ, eds. Epidemiology of	contained underwater breathing	illness. Journal of Hygiene,	
Injury in Adventure and Extreme	apparatus divers: prevalence and	8:342-344.	
Sports. Basel: Karger, 57-59.	specific risk factors. Ergonomics,		
	52(4):461-473.	27. Blatteau J-E, Pontier J-M,	
2. Ranapurwala SI, Bird N,		Buzzacott P, et al. (2016).	
Vaithiyanathan P, Denoble PJ.	11. Smerz RW. Age associated risks	Prevention and treatment of	
Scuba diving injuries among	of recreational scuba diving. (2006).	decompression sickness using	
Divers Alert Network members	Hawaii Medical Journal, 65(5):140.	training and in-water	
2010-2011. (2014). Diving		recompression among	
Hyperbolic Medicine, 44(2):79-	12. Lippmann J, Baddeley A, Vann R,	fisherman divers in Vietnam.	
85.	Walker D. (2013). An analysis of the	Injury Prevention, 22(1):25-32.	
	causes of compressed-gas diving		
3. Lippmann J, Stevenson C, McD	fatalities in Australia from 1972-	28. Ranapurwala SI, Denoble PJ,	
Taylor J, Williams J. (2016).	2005. Diving Hyperbolic Medicine,	Poole C, Kucera KL, Marshall	
Estimating the risk of a scuba	43(3):170.	SW, Wing S. (2016). The effect	
diving fatality in Australia. Diving		of using a pre-dive checklist on	
Hyperbolic Medicine, 46(4):241-	13. Denoble PJ, Marroni A, Vann RD.	the incidence of diving mishaps	
244.	Annual fatality rates and associated	in recreational scuba diving: A	
	risk factors for recreational scuba	cluster-randomized trial.	
4. Denoble PJ, Pollock NW,	diving. Recreational Diving Fatalities	International Journal of	
Vaithiyanathan P, Caruso JL,	Workshop Proceedings, 73-85.	Epidemiology, 45(1):223-231.	
Dovenbarger JA, Vann RD.			
(2008). Scuba injury death rate	14. Blatteau JE, Gempp E, Simon O,	29. Gempp E, Blatteau J-E.	
among DAN members. Diving	et al. (2011). Prognostic factors of	(2010). Preconditioning	
Hyperbolic Medicine, 38(4):182-	spinal cord decompression sickness	methods and mechanisms for	
188.	in recreational diving: Retrospective	preventing the risk of	
	and multicentric analysis of 279	decompression sickness in	
5. Godden D, Currie G, Denison	cases. <i>Neurocritical Care</i> , 15(1):120-	scuba divers: A review.	
D, et al. (2003). British Thoracic	127.	Research in Sport Medicine,	
Society guidelines on respiratory		18(3):205-218.	
aspects of fitness for diving.	15. Ustrup AS, Ulrik CS. (2017). Are		
Inorax, 58(1):3-13.	recreational SCUBA divers with		
	asthma at increased risk? Journal of		
6. Gempp E, Blatteau JE, Simon	Asthma, 1-8.		

O, Stephant E. (2009).			
Musculoskeletal decompression	16. Lairez O, Cournot M, Minville V,		
sickness and risk of dysbaric	et al. (2009). Risk of neurological		
osteonecrosis in recreational	decompression sickness in the diver		
divers. Diving Hyperbolic	with a right-to-left shunt: Literature		
Medicine, 39(4):200-204.	review and meta-analysis. <i>Clinical</i>		
	Journal of Sport Medicine, 19(3):231-		
7. Connolly DM, Lee VM. (2015).	235.		
Odds ratio meta-analysis and			
increased prevalence of white	17. Gempp E, Louge P, Lafolie T,		
matter injury in healthy divers.	Demaistre S, Hugon M, Blatteau JE.		
Aerospace Medicine and Human	(2014). Relation between cervical		
Performance, 86(11):928-935.	and thoracic spinal canal stenosis		
	and the development of spinal cord		
8. Yousef MK, Ibrahim M, Assiri	decompression sickness in		
A, Hakeem A. (2015). The	recreational scuba divers. Spinal		
prevalence of oro-facial	<i>Cord</i> , 52(3):236-240.		
barotrauma among scuba-divers.			
Diving Hyperbolic Medicine,	18. Beckett A, Kordick MF. (2007).		
45(3):181-183.	Risk factors for dive injury: A survey		
	study. Research in Sport Medicine,		
9. Ranna V, Malmstrom H,	15(3):201-211.		
Yunker M, Feng C, Gajendra S.			
(2016). Prevalence of dental	19. Madden D, Lozo M, Dujic Z,		
problems in recreational SCUBA	Ljubkovic M. (2013). Exercise after		
divers: a pilot survey. British	SCUBA diving increases the incidence		
Dentistry Journal, 221(9):577-	of arterial gas embolism. Journal of		
581.	Applied Physiology, 115:716-722.		
10. Knaepen K, Cumps E, Zinzen	20. Madden D, Thom SR, Dujic Z.		
E, Meeusen R. (2009). Low-back	(2016). Exercise before and after		
problems in recreational self-	SCUBA diving and the role of cellular		
contained underwater breathing	microparticles in decompression		
apparatus divers: prevalence and	stress. Wealcal Hypotheses,		
specific risk factors. <i>Ergonomics</i> ,	80(2016):80-84.		
52(4):401-4/3.	21 Shoffield DL Vann DD (2004)		
	21. Sheffield PJ, Vann KD. (2004).		
	Figing after diving workshop		

proceedings. In: <i>Divers Alert</i> Network. Durham, NC.		
22. Lobbezoo F, van Wijk AJ, Klingler MC, Ruiz Vicente E, van Dijk CJ, Eijkman MAJ. (2014). Predictors for the development of temporomandibular disorders in scuba divers. <i>Journal of Oral</i> <i>Rehabilitation</i> , 41(8):573-580.		
23. Zanchi J, Ljubkovic M, Denoble PJ, Dujic Z, Ranapurwala SI, Pollock NW. (2014). Influence of repeated daily diving on decompression stress. <i>Diving Hyperbolic Medicine</i> , 44(3):166.		
24. Madden D, Thom SR, Yang M, Bhopale VM, Ljubkovic M, Dujic Z. (2014). High intensity cycling before SCUBA diving reduces post- decompression microparticle production and neutrophil activation. <i>European Journal of</i> <i>Applied Physiology</i> , 114(9):1955- 1961.		
25. Madden D, Thom SR, Milovanova TN, et al. (2014). Exercise before scuba diving ameliorates decompression-induced neutrophil activation. <i>Medicine and Science in</i> <i>Sports and Exercise</i> , 46(10):1928- 1935.		

Review of Sport Injury Burden, Risk Factors and Prevention

Scuba-Diving

Incidence and Prevalence

Scuba diving, an activity that involves the use of a self-contained underwater breathing apparatus (scuba) to breathe underwater, may be done recreationally or professionally in a number of applications. Injuries that occur while scuba diving are typically due to changes in pressure during ascent from deeper water.

Incidence and/or prevalence data is often limited by a lack of injury reporting in recreational diving and is mainly dependent on reports from registered divers from the Divers Alert Network (DAN). In a review of the epidemiology of injury in all recreational divers, the prevalence of incidents ranged from 7 to 35 injuries per 10,000 divers and from 5 to 152 injuries per 100,000 dives (P. L. Buzzacott, 2012). In a cross-sectional survey of registered members of the Divers Alert Network in 2010-2011, the overall rate of diving-related injury was much higher; 3.02 per 100 dives (Ranapurwala, Bird, Vaithiyanathan, & Denoble, 2014).

Recreational scuba diving fatalities account for 0.013% of all-cause mortality in people ages 15 years and older (Ranapurwala et al., 2014). The Divers Alert Network identified 188 fatalities worldwide in 2014; sixty of these fatalities took place in North America (50 in USA, 4 in Canada and 6 in Mexico) (Peter L. Buzzacott, 2016). Variations in fatality rates reported between and within countries are likely due to differences in diving conditions and practices between areas, data reliability and differences in diver characteristics. The mean annual fatality rate (AFR) for insured members of the Divers Alert Network in the USA was 16.7 deaths per 100,000 divers with 95% CI 14.2-19.0 over the period 2000-2006 (1 death in 6,000 per annum) (P J Denoble et al., 2008). Similarly, British Sub-Agua Club membership and fatality data indicate an AFR of 14.4 (95% CI 10.5-19.7) per 100,000 members over the same period and, more recently, a fatality rate of 18.3 per 100,000 members for the year 2016 (Cumming & Watson, 2016). Annual scuba diving fatality rates in Australia are reported at 0.48 (0.37-0.59) deaths per 100,000 dives, or 8.73 (6.85-10.96) deaths per 100,000 divers for Australian residents; 0.12 (0.05-0.25) deaths per 100,000 dives, or 0.46 (0.20-0.91) deaths per 100,000 divers for international visitors to Queensland; and 1.64 (0.20-5.93) deaths per 100,000 dives for the dive operator in Victoria (John Lippmann, Stevenson, McD Taylor, & Williams, 2016). Comparable to Victoria, measured data from British Columbia, Canada in 2000 indicated an AFR of 2.05 (95% CI 0.0 to 6.0) per 100,000 dives (Ladd, Stepan, & Stevens, 2002). More recent data on fatality rates related to number of divers or dives has not been published.

Decompression Sickness (DCS) is the most common diving-related injury; however, the type of complications reported, vary across cases. Incidence of self-reported DCS symptoms was 1.55 per 1,000 dives and treated DCS was 5.72 per 100,000 dives amongst Divers Alert Network members (P J Denoble et al., 2008). Rate of occurrence (per dive) of DCS for recreational divers in the USA is estimated at 0.017 to 0.2% (Godden et al., 2003). Following

DCS, the prevalence of dysbaric osteonecrosis (a form of avascular necrosis - death of a portion of the bone, thought to be caused blockage of the blood vessels from diving) in hyperbaric centres in Southern France was 19%, suggesting MRI for routine screening is justified in recreational divers treated for musculoskeletal DCS before they return to diving (Emmanuel Gempp, Blatteau, Simon, & Stephant, 2009). In a meta-analysis of MRI studies, results suggest that repeated hyperbaric exposure increases the prevalence of white matter injury in experienced healthy divers without neurological decompression illness [Odds Ratio (OR)=2.65, 95% CI 1.72 to 4.10] (Connolly & Lee, 2015).

Orofacial injuries are also common in scuba diving. An investigation of orofacial barotrauma symptoms in 163 Saudi divers reported a prevalence of 51.9% for dry mouth, 32.5% for clenching and 19.5% for temperomandibular pain during a dive. The most frequent symptoms after a dive were dry mouth (22.7%) followed by clenching and facial pain (16.9%) (Yousef, Ibrahim, Assiri, & Hakeem, 2015). In a survey of 100 certified recreational divers, 41% of the respondents experienced dental symptoms during a dive. Barodontalgia (tooth pain caused by a change in ambient temperature) was the most frequently experienced dental symptom during a dive (Ranna, Malmstrom, Yunker, Feng, & Gajendra, 2016).

Decompression injuries aside, musculoskeletal injuries are also prevalent in scuba diving. The lifetime and 1-year prevalence of lower back pain among 181 recreational Flemish scuba divers was reported at 55.8% and 50.3%, respectively (Knaepen, Cumps, Zinzen, & Meeusen, 2009).

Risk and Protective Factors

Many risk factors for scuba diving injury have been reported, including non-modifiable factors such as age, sex, asthma, diabetes, right-to-left shunt and spinal stenosis. Modifiable risk factors for scuba injury include body mass index (BMI), training/experience factors, exercise after diving, flying after diving and equipment factors.

Non-modifiable Risk Factors

As divers age, there is an increased risk for decompression illness and diving fatality (J. E. Blatteau et al., 2011; Petar J Denoble, Marroni, & Vann, 2008; J. Lippmann, Baddeley, Vann, & Walker, 2013; Smerz, 2006). Increased relative risks (RR) between older (>49 years) and younger divers are found for arterial gas embolism (RR=3.9), asphyxia (RR=2.5) and disabling cardiac injury (RR=12.9) (Petar J Denoble et al., 2008). Greater age (>42 years) is also a prognostic factor for incomplete recovery from severe decompression illness (J. E. Blatteau et al., 2011; Smerz, 2006). The annual fatality rate for males is greater than for females by 10 per 100,000 divers up to age 65 years, after which the rates are essentially the same for both sexes. The relative risk between males and females decreases from 6 at age 25 years to 1 at age 65 years (Petar J Denoble et al., 2008).

The presence of underlying conditions also places scuba divers at increased risk for injury. A systematic review in 2016 reported that recreational divers with asthma may be at increased risk for diving-related injuries compared to non-asthmatic divers; however, there is limited high quality evidence available to support this (Ustrup & Ulrik, 2017). Divers with diabetes mellitus may be at greater risk of death due to chronic cardiac disease and unexplained loss of consciousness (Petar J Denoble et al., 2008). In a 2009 meta-analysis, the combined odds ratio of neurological decompression sickness in divers with right-to-left shunt (RLS) was 4.23 (95% CI 3.05 to 5.87) (Lairez et al., 2009). In addition, divers with cervical and thoracic spinal canal stenosis, mainly due to disk degeneration, are at increased risk for the occurrence of spinal cord decompression sickness (E Gempp et al., 2014).

Modifiable Risk Factors

With regards to body composition, an increased body fat leads to increased nitrogen storage and hence possible excessive nitrogen bubble formation and increased risk of development of DCS (Mouret, 2006). The odds of surviving arterial gas embolism are greater for divers with a normal BMI, compared to those with higher BMIs (Petar J Denoble et al., 2008). Those 25% or more overweight have been estimated to have a tenfold increased risk of developing DCS (Mouret, 2006).

Training and experience are important modifiable risk factors for scuba diving injury. Divers in their first year of certification, particularly divers on their first dive, are at increased risk of injury (Denoble et al., 2008; Beckett & Kordick, 2007).

In a study by Beckett & Kordick (2007), the reported relative risk for diving injury in noncertified divers was 1.31 (95% CI 1.16 to 1.48), compared to certified divers. Two studies reported increases in injury in new divers from ascent training; a study in Belgium found 100– 400 times increased risk of pulmonary barotrauma during training dives, and in Denoble et al. (2008), the risk of pulmonary barotrauma associated with ascent training, increased by 500-1,500 times (Petar J Denoble et al., 2008). There was one study that demonstrated that the risk of lower back pain was higher in divers with a higher dive certificate (i.e., divers with greater diver training) (p=0.007) (Knaepen et al., 2009).

Exertive exercise following a dive increases the risk of arterialization from 13% at rest to 52% (Madden, Lozo, Dujic, & Ljubkovic, 2013). Evidence suggests arterialization likely increases the relative risk of neurological DCS (Madden, Thom, & Dujic, 2016). Additionally, for a single no-decompression dive, divers should wait at least 12 hours before flying; for multiple dives per day or multiple days of diving, 18 hours is suggested, and for any decompression dives, substantially longer than 18 hours appears prudent to reduce risk of DCS (Sheffield & Vann, 2004).

Equipment factors also play a role in risk of injury. Arterial gas embolism and asphyxia are associated with buoyancy trouble, equipment trouble, gas supply trouble and ascent time/trouble (J. Lippmann et al., 2013). Biting on the mouthpiece (OR=1.60), clenching

(OR=2.47) and the quality rating of the mouthpiece (OR=0.89) are risk factors for presence of temperomandibular pain in divers (Lobbezoo et al., 2014). Scuba divers with lower back pain have reported to use significantly more weights on their weight belts during indoor training (p=0.003) and during outdoor dives with a dry suit (p=0.044) as compared to asymptomatic scuba divers (Knaepen et al., 2009).

Some evidence of protective factors for scuba diving injury has been reported in the injury prevention literature. A decrease in post-dive circulating venous gas emboli (VGE or bubbles) represents successful acclimatization. Zanchi et al., (2016) found that the completion of identical daily dives results in progressively decreasing odds of having DCS (measured by higher-grade VGE) on consecutive days. The odds of having higher grade VGE on a Day 4 dive were half that of a Day 1 dive (OR=0.50, 95% CI: 0.34 to 0.73) (Zanchi et al., 2014). This indicates that certain adaptations take place after more dives. There is also evidence that an exercise bout prior to a dive has protective effects. A single bout of exercise 2 hours before diving reduces microparticle counts and some indicators of platelet and neutrophil activation, which are correlated with DCS in mice. The effect was observed following both aerobic interval training and anaerobic cycling (Madden, Thom, Milovanova, et al., 2014; Madden, Thom, Yang, et al., 2014; Madden et al., 2016).

Opportunities for Prevention: Effective Interventions, Cost-Effectiveness, Implementation and Evaluation

Historically, preventing DCS has been based on slow ascent and increasing the duration of decompression stops. This has dramatically reduced the incidence and severity of DCS in developed countries in the twentieth century (Boycott, Damant, & Haldane, 1908). Other effective interventions include education, use of a pre-dive checklist and use of pre-conditioning methods.

Although not tested in recreational divers, education or ascent training is an important component of injury prevention. After educating fisherman divers in Vietnam on in-water recompression techniques, the incidence of severe DCS decreased by 75% in 3 years; from 8 per 1000 divers before 2009 to 2 per 1000 divers after the intervention (J.-E. Blatteau et al., 2016).

Compared with a control group, use of a pre-dive checklist decreased the incidence of major mishaps in the intervention group by 36%, minor mishaps by 26% and all mishaps by 32%. On average, there was one fewer mishap in every 25 intervention dives amongst 1,043 experienced divers during 2,041 dives (Ranapurwala et al., 2016).

Experimental evidence suggests that for a population of trained and military divers, endurance exercise (even in a warm environment) associated with oral hydration prior to the dive is beneficial in vascular bubble reduction. These methods; however, have not been tested in the form of a randomized controlled trial (Emmanuel Gempp & Blatteau, 2010). Clinical data to support additional intervention measures on DCS development are lacking due in part to the great inter/intra-variability between individuals regarding susceptibility to DCS.

References

- Blatteau, J.-E., Pontier, J.-M., Buzzacott, P., Lambrechts, K., Nguyen, V. M., Cavenel, P., & Ruffez, J. (2016). Prevention and treatment of decompression sickness using training and in-water recompression among fisherman divers in Vietnam. *Injury Prevention : Journal of the International Society for Child and Adolescent Injury Prevention, 22*(1), 25–32. http://doi.org/10.1136/injuryprev-2014-041464
- Blatteau, J. E., Gempp, E., Simon, O., Coulange, M., Delafosse, B., Souday, V., ... Barthelemy, A. (2011). Prognostic factors of spinal cord decompression sickness in recreational diving: Retrospective and multicentric analysis of 279 cases. *Neurocritical Care*, 15(1), 120–127. http://doi.org/10.1007/s12028-010-9370-1
- Boycott, A., Damant, C., & Haldane, J. (1908). The prevention of compressed air illness. J Hyg (Lond), 8, 342–344.
- Buzzacott, P. L. (2012). The Epidemiology of Injury in Scuba Diving. In T. W. Heggie & D. J. Caine (Eds.), Epidemiology of Injury in Adventure and Extreme Sports (pp. 57–59). Basel: Karger. http://doi.org/https://doi.org/10.1159/000338582
- Buzzacott, P. L. (2016). DAN Annual Diving Report 2016 Edition A Report on 2014 Data on Diving Fatalities, Injuries and Incidents. Durham, NC: Divers Alert Network. Retrieved from https://www.diversalertnetwork.org/medical/report/AnnualDivingReport-2016Edition.pdf
- Connolly, D. M., & Lee, V. M. (2015). Odds ratio meta-analysis and increased prevalence of white matter injury in healthy divers. *Aerospace Medicine and Human Performance*, *86*(11), 928–935. http://doi.org/10.3357/AMHP.4392.2015
- Cumming, B., & Watson, J. (2016). *National Diving Committee Diving Incidents Report*. Cheshire: British Sub-Aqua Club. Retrieved from https://www.bsac.com/core/core_picker/download.asp?id=27676&filetitle=Diving+Incide nt+Report+2016
- Denoble, P. J., Marroni, A., & Vann, R. D. (2008). Annual fatality rates and associated risk factors for recreational scuba diving. *Recreational Diving Fatalities Workshop Proceedings*, (Monaghan), 73–85. http://doi.org/ISBN #978-0-615-54812-8.

Denoble, P. J., Pollock, N. W., Vaithiyanathan, P., Caruso, J. L., Dovenbarger, J. A., & Vann, R. D.

(2008). Scuba injury death rate among DAN members. *Diving and Hyperbaric Medicine*, *38*(4), 182–188.

- Gempp, E., & Blatteau, J.-E. (2010). Preconditioning methods and mechanisms for preventing the risk of decompression sickness in scuba divers: A review. *Research in Sports Medicine*, *18*(3), 205–218. http://doi.org/10.1080/15438627.2010.490189
- Gempp, E., Blatteau, J. E., Simon, O., & Stephant, E. (2009). Musculoskeletal decompression sickness and risk of dysbaric osteonecrosis in recreational divers. *Diving and Hyperbaric Medicine*, *39*(4), 200–204.
- Gempp, E., Louge, P., Lafolie, T., Demaistre, S., Hugon, M., & Blatteau, J. E. (2014). Relation between cervical and thoracic spinal canal stenosis and the development of spinal cord decompression sickness in recreational scuba divers. *Spinal Cord*, 52(3), 236–240. http://doi.org/10.1038/sc.2013.121
- Godden, D., Currie, G., Denison, D., Farrell, P., Ross, J., Stephenson, R., ... Wilmshurst, P. (2003).
 British Thoracic Society guidelines on respiratory aspects of fitness for diving. *Thorax*, 58(1), 3–13. http://doi.org/10.1136/thorax.58.1.3
- Knaepen, K., Cumps, E., Zinzen, E., & Meeusen, R. (2009). Low-back problems in recreational self-contained underwater breathing apparatus divers: prevalence and specific risk factors. *Ergonomics*, 52(4), 461–73. http://doi.org/10.1080/00140130802707766
- Ladd, G., Stepan, V., & Stevens, L. (2002). The Abacus Project: establishing the risk of recreational scuba death and decompression illness. SPUMS Journal, 32(3), 124–128. http://doi.org/10.1097/00000542-196509000-00032
- Lairez, O., Cournot, M., Minville, V., Roncalli, J., Austruy, J., Elbaz, M., ... Carrié, D. (2009). Risk of neurological decompression sickness in the diver with a right-to-left shunt: Literature review and meta-analysis. *Clinical Journal of Sport Medicine*, 19(3), 231–235. http://doi.org/10.1097/JSM.0b013e31819b0fa2
- Lippmann, J., Baddeley, A., Vann, R., & Walker, D. (2013). An analysis of the causes of compressed-gas diving fatalities in Australia from 1972-2005. *Diving and Hyperbaric Medicine*, *43*(3), 170.

Lippmann, J., Stevenson, C., McD Taylor, J., & Williams, J. (2016). Estimating the risk of a scuba

diving fatality in Australia. *Diving and Hyperbaric Medicine*, 46(4), 241–244.

- Lobbezoo, F., van Wijk, A. J., Klingler, M. C., Ruiz Vicente, E., van Dijk, C. J., & Eijkman, M. A. J. (2014). Predictors for the development of temporomandibular disorders in scuba divers. *Journal of Oral Rehabilitation*, 41(8), 573–580. http://doi.org/10.1111/joor.12178
- Madden, D., Lozo, M., Dujic, Z., & Ljubkovic, M. (2013). Exercise after SCUBA diving increases the incidence of arterial gas embolism. *J Appl Physiol Journal of Applied Physiology at Portsmouth Library on*, *115*, 716–722. http://doi.org/10.1152/japplphysiol.00029.2013
- Madden, D., Thom, S. R., & Dujic, Z. (2016). Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress. *Medical Hypotheses*, *86*(2016), 80–84. http://doi.org/10.1016/j.mehy.2015.12.006
- Madden, D., Thom, S. R., Milovanova, T. N., Yang, M., Bhopale, V. M., Ljubkovic, M., & Dujic, Z. (2014). Exercise before scuba diving ameliorates decompression-induced neutrophil activation. *Medicine and Science in Sports and Exercise*, 46(10), 1928–1935. http://doi.org/10.1249/MSS.00000000000319
- Madden, D., Thom, S. R., Yang, M., Bhopale, V. M., Ljubkovic, M., & Dujic, Z. (2014). High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation. *European Journal of Applied Physiology*, 114(9), 1955–1961. http://doi.org/10.1007/s00421-014-2925-7

Mouret, G. M. L. (2006). Obesity and diving. *Diving and Hyperbaric Medicine*, *36*(3), 145–147.

- Ranapurwala, S. I., Bird, N., Vaithiyanathan, P., & Denoble, P. J. (2014). Scuba diving injuries among Divers Alert Network members 2010-2011. *Diving and Hyperbaric Medicine*, 44(2), 79–85.
- Ranapurwala, S. I., Denoble, P. J., Poole, C., Kucera, K. L., Marshall, S. W., & Wing, S. (2016). The effect of using a pre-dive checklist on the incidence of diving mishaps in recreational scuba diving: A cluster-randomized trial. *International Journal of Epidemiology*, 45(1), 223–231. http://doi.org/10.1093/ije/dyv292
- Ranna, V., Malmstrom, H., Yunker, M., Feng, C., & Gajendra, S. (2016). Prevalence of dental problems in recreational SCUBA divers: a pilot survey. *British Dental Journal*, 221(9), 577– 581. http://doi.org/10.1038/sj.bdj.2016.825

- Sheffield, P. J., & Vann, R. D. (2004). Flying after diving workshop proceedings. In *Divers Alert Network*. Durham, NC.
- Smerz, R. W. (2006). Age associated risks of recreational scuba diving. *Hawaii Medical Journal*, 65(5), 140.
- Ustrup, A. S., & Ulrik, C. S. (2017). Are recreational SCUBA divers with asthma at increased risk? *Journal of Asthma*, 1–8. http://doi.org/10.1080/02770903.2016.1263861
- Yousef, M. K., Ibrahim, M., Assiri, A., & Hakeem, A. (2015). The prevalence of oro-facial barotrauma among scuba-divers. *Diving and Hyperbaric Medicine*, *45*(3), 181–183.
- Zanchi, J., Ljubkovic, M., Denoble, P. J., Dujic, Z., Ranapurwala, S. I., & Pollock, N. W. (2014).
 Influence of repeated daily diving on decompression stress. *Diving and Hyperbaric Medicine*, 44(3), 166. http://doi.org/10.1055/s-0033-1334968